2) Uma bióloga, desejando calcular o número de peixes de um lago, captura no dia 1º de maio uma amostra de 60 peixes e, após marcá-los os solta. No 1º dia de setembro ela captura uma amostra de 70 peixes e constata que 3 deles estão marcados. Para calcular o número de peixes existentes no lago no dia 1º de maio, ela supõe que:

– 25% desses não estavam no lago em 1º de setembro (em virtude de morte ou emigrações);
– que 40% dos peixes presentes no lago em 1º de Setembro não estavam no lago em 1º de Maio (em virtude de nascimento e imigrações);
– que o número de peixes marcados e não marcados na amostrado no dia 1º de Setembro sejam representativos da população total.

Qual o número de peixes que a bióloga calculou que havia no lago no dia 1º de Maio?

Resolução:

Essa parece realmente complicada. Digamos que em maio, haviam x peixes. Desses, foram pegos 60 e marcados. Como em setembro, 25% desses peixes haviam morrido, ficamos assim:

                     total   marcados

   maio =          x          60

setembro =   0,75x      45

Se morreram 25%, sobraram 75% do total (x) de peixes, assim como aconteceu com os peixes da amostra. Se tínhamos 60 peixes e 25% deles morreram, sobraram 75% deles:

0,75 . 60 = 45 peixes marcados

Quando foi feita nova captura em setembro, dos 70 peixes capturados, 40% não estavam no lago em maio, ou seja, dos 70 peixes, só 60% estavam também em maio e têm chances de estarem marcados:

0,6 . 70 = 42 peixes de maio

E vimos que dos 42 peixes da nova amostra, que estavam no mês de maio também, só 3 estavam marcados. Aí temos uma proporção: 3/42 = 1/14. Isso quer dizer que 1/14 dos peixes do lago em maio foram marcados. Agora podemos fazer a comparação com o que tínhamos antes:

 total     marcados

0,75x        45

  42            3

Aí podemos descobrir x:

3.0,75x = 42.45

0,75x = 42.45/3

0,75x = 42.15

3x/4 = 42.15

x/4 = 42.15/3

x/4 = 42.5

x = 42.5.4

x = 42.20

x = 840 peixes

Agora veja que a informação de que morreram 25% dos peixes é desnecessária. Pois poderíamos fazer simplesmente a regra de três sabendo que em maio, existiam x peixes, dentre eles 60 marcados. Desses peixes, em setembro, entre 42 haviam 3 marcados:

total    marcados

  x           60

 42           3

3x = 60.42

x = 60.42/3

x = 20.42

x = 840 peixes

Isso acontece porque como foi uma porcentagem que morreu, na hora da regra de três não importa, já que a mesma porcentagem que morreu do total morreu da amostra de marcados.

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *